Two-way amplify-and-forward relaying with carrier offsets in the absence of CSI: differential modulation-based schemes

نویسندگان

  • Zhuo Wu
  • Guangxiang Li
  • Tao Wang
چکیده

In this paper, differential modulation (DM) schemes, including single differential and double differential, are proposed for amplify-and-forward two-way relaying (TWR) networks with unknown channel state information (CSI) and carrier frequency offsets caused by wireless terminals in high-speed vehicles and trains. Most existing work in TWR assumes perfect channel knowledge at all nodes and no carrier offsets. However, accurate CSI can be difficult to obtain for fast varying channels, while increases computational complexity in channel estimation and commonly existing carrier offsets can greatly degrade the system performance. Therefore, we propose the two schemes to remove the effect of unknown frequency offsets for TWR networks, when neither the sources nor the relay has any knowledge of CSI. Simulation results show that the proposed differential modulation schemes are both effective in overcoming the impact of carrier offsets with linear computational complexity in the presence of high mobility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single and Double-Differential Coding in Cooperative Communications

In this chapter, we discuss single and double-differential coding for a two-user cooperative communication system. The single-differential coding is important for the cooperative systems as the data at the destination/relaying node can be decoded without knowing the channel gains. The double-differential modulation is useful as it avoids the need of estimating the channel and carrier offsets fo...

متن کامل

Cooperative Communications over Flat Fading Channels with Carrier Offsets: A Double-Differential Modulation Approach

We propose double-differential (DD) modulation for the amplify-and-forward protocol over Nakagami-m fading channels with carrier offsets. We propose an emulated maximum ratio combining (EMRC) decoder, which could be used by the doubledifferential receiver in the absence of exact channel knowledge. Approximate bit error rate (BER) analysis is performed for the proposed double-differential modula...

متن کامل

Performance Analysis of cooperative SWIPT System: Intelligent Reflecting Surface versus Decode-and-Forward

In this paper, we explore the impacts of utilizing intelligent reflecting surfaces (IRS) in a power-splitting based simultaneous wireless information and power transfer (PS-SWIPT) system and compare its performance with the traditional decode and forward relaying system. To analyze a more practical system, it is also assumed that the receiving nodes are subject to decoding cost, and they are on...

متن کامل

Timing and Carrier Synchronization with Channel Estimation in AF Two-Way Relaying Networks

Two-way relaying networks (TWRNs) allow for more bandwidth efficient use of the available spectrum since they allow for simultaneous information exchange between two users with the assistance of an intermediate relay node. However, due to superposition of signals at the relay node, the received signal at the user terminals is affected by multiple impairments, i.e., channel gains, timing offsets...

متن کامل

Design on Precoder in Cooperative Spatial Multiplexing Systems with Amplify-and-Forward Relaying

Simple half-duplex repetition-based relaying protocols can achieve spatial diversity at the expense of additional relaying signals in the time domain. In this paper, a linear unitary precoder based on a singular vector for cooperative systems with the amplify-and-forward (AF) relaying protocol is proposed in order to improve spectral efficiency. An exact expression of the precoder design is fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014